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The Liapunov stability of solutions of the form (1.2) of the nonlinear wave equation (1.1) 

is considered. Hypotheses on the behavior of one class of solutions of equation (1.1) for 

t + m are given which results from the representation of the irreversible nature of the pro- 

cess described by (1.1). 

The nonlinear wave equation 

1 g - D + 1 - f (q*lT)}rp (G t) = 0 (0.1) 

under certain constraints on the function f, has a solution of the form 

cp (x, t, E) = a (I, E) eiEf (0.2) 

where the function (I (x, E) decreases exponentially as 1x1 + DO. 

The operation of the Lorentz transformation on a wave packet 4 (x, t, E) at rest yields 

the moving wave packet 

,(~,~,~,B)=eXp(i~~)U(j~~.E) (p-thevelocity) (0.3) 

which also satisfies equation (0.1) because of its Lorentz invariance. 

A question which it is natural for physicists to discuss repeatedly is [I] : May the 

solutions (0.2) be interpreted as particles ,?+ From this viewpoint, what must first be 

*The solution of (1.1) may be given physical meaning by comparing it (because of (0.1)) to 

conservation of the four-vector of the momentum’s energy 

(continued on the next page) 

497 



498 L.G. Zaa tavenko 

clarified is : What is the result of the collision of two moving wave packets, c& = (~5 (x, t, 

E, /n and c#+ = + fx, t. E, - /?), say. Let the solution (b (z, I) of (0.1) be determined by the 

asympototic condition ~4 (x, t) - (6,. 4 fx, I) - ~$r -4 0 as t + - m; it is necessary to 

establish whether an analogous asymptotic condition will be satisfied as r + + 00. 

There is, however, a simpler question, which is also essential if the above-mentioned 

physical interpretation of the solution (0.2) is to be possible (following[l], we shall de- 

signate this solution as particle-like) ; this is the question of the stability of the solution 

(0.2) with respect to small changes in the initial conditions, i.e. the question of Liapunov 

stability. The given work [2] is also devoted primarily to the investigation of this question. 

The simplest case of a wave equation with one space coordinate is considered in 

detail in section 2; complications which arise in the case of three space degrees of freedom 

are discussed in section 4. Let us take the simplest kind of function 

The priscipal novelty herein is the generalization of the known statement on the stab- 

ility (instability) of the equilibrium position in which the potential energy has a minimum 

(saddle point) as applied to the ‘equilibrium position’ (0.2). i.e. the simplest periodic 

solutions. The proposed extension is very simple: it is based entirely on the fact that (as 

is easy to verify) the ‘point’ (0.2) achieves the extremum to the energy functional (1.1) 

when a surface of constant charge (1.2) passes through it. The idea pf the similarity of 

(0.1) to the systems of equations in mechanics plays an essential part herein. The result- 

ing hypotheses on the behaviour of 4 (x, t) as t + m are expounded in section 3. We take 

the opportunity to thank V.V. Rabnikov, V.K. Mel’nikov, M.A. Markov, III. P. Rybakov and 

1a.P. Terletskii for interest in the research. 

1. Of the number of integrals of the motion defined by equation (0.1) let us write down 

the energy E* and the charge Q : 

-4-m I 
E*= I-- s dx{cp*‘cp’ + v(p*v(p + q*‘p - F (cp*cp)} (F(z)=~f(x)dz) (1.1) 

--CC 0 

Q = - + +r dx (- cp*‘cp + (p-q*) 
- 

(1.2) 

(continued ftom previous page) 

here Tik is the tensor of the momentum-energy density (see, [21. etc, for example). 

Eybakov [3] 1 a so investigated the stability of the solution (1.2). but did not succeed 
in obtaining a specific result. 
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We shall denote the problem of seeking the solution $ (x, t) of (0.1) with the initial 

conditions ‘p (x, 0) z ‘p. (z), up’ (5, 0) = I#,, (7) as P (cp,,, $0). Later we shall also 

need equation (0.1) in integral form 

cp Cr., 1) = ‘po (2, 2) -t G [f (cp*cp) (~1 (~7 t) (1.3) 

Let us present an explicit expression for the operator C for the one-dimensional case 

G11 (5, t) = -$r ‘i’dg Jo (I/@ - q2 - g”) q (z - E, t) (1.4) 

0’ T-f 

The function &, (x, t) in (1.3) is a solution of the problem PO (qo, qo), i.e. of the 

linear equation 

(iY I at2 - n + 1) ‘PO b, t) = 0 (1.5) 

with the initial condition (A, o,,). W e shall denote the problem of seeking the solution of 

(1.3) by L (do, &d. 

Let us also note the following notation used later 

RE (9) = \ {Vcp*Vj-(p + ‘p*‘p (1 - E2)) dx 
(1.6) 

6.) (p) = VP” + 1 

2. In order to determine the function a(%, E) we obtain the equation 

i 
- & -j- 1 - E? - (a*a,n}. (2, E) = 0 (2.1) 

It is easy to see that for E’ < 1 this equation has a unique (to the accuracy of the 

transformation a (5, E) -, U (x + a, E) e@ ), solution o (x, E) tending to zero as 

Irl +OQ where 

a (5, E) = (1 - E’)$b (x ‘r/l - E2) 

b (x) = 0 (e-1x1) for l~l--fm, b (- 5) = b (XT) 
(2.2) 

Substituting (2.2) into (1.1) and (1.2) we find 

1 --- 

E” =E* (E) =-&(I -& ’ (n + 2E2) J, (b) 

--- 
Q= Q(E)+-& i J, (6) 

(2.3) 

(2.4) 

In deriving (2.3) we have used the relationship 
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dz [2z (I-P) - F (c) - zf (z)l = 0 (z G [u (.I:, Is)]‘) 
(2.51 

It may easily be derived from the condition that the integral of the space componeuts 

of the energy-density tensor vanishes, say (see footnote on pages 497 and 498) which cor- 

responds to the solution (0.2) (Laue theorem [2] ). 

2.1. It is convenient to formulate the local existence theorem as follows. 

Theorem 2.1. If 16 (z, t) 1 < ~VO for t >/ 0, the solution 4 (x, t) of the problem 

L (& $0) may be constructed for0 < t < T, Mu7 = a (rz) > 0 by iterations of the 

form 

‘p,,, (G t) = ‘PO (XI t) + G [f (Icp, I”) ‘p,I (27 t) (2.6) 

Here $0 (x, L) is the solution of the problem PO (cpo, IJI~), i.e. of (1.5). 

The solution $J (x, t) will be: a) unique; b) bounded, i.e. 

1 cp (4 t) I < P b) MO for t < T 

C) have continuous derivatives to second order inclusive and satisfy the equation 

P (cpo, qo), if the functions ‘p. (x), q. (5) and G$,, / dx h * ave continuous first derivatives. 

Proof. The boundedness of the iteration is established by comparing the estimates 

for I+,,(%, 1) 1 with the expansion c = !/ f y’f2n 4 . . . (1 y 1 < a (n)) of the root of the 

equation z = y + ~t+2~. The rest of the proof is standard. See also [4], where an equa- 

tion similar to (0.1) is examined. 

Corollary 2.1. If there is a number M independent of T, for the given functions 

‘PO (x), $0 (2) (continuous together with the derivatives 119~ ,’ dx, rlgo / dr, d+po / d$) such 

that it follows from the existence of a solution d (x, t) of the problem P ((po, Qo) for 

0 < t < 7 that I$ (x, t) 1 < M for 0 < t r, then the solution (‘I (z, 1) exists on the whole half- 

axis t >O. 

The proof is obvious. Corollary 2.1 guarantees the existence of a solution to the pro- 

blem P (cp,, 9”) for motioh around a stable generalized equilibrium position C/I (x, t, E) 

(section 2.4). 

2.2. Let q = Q(E) be the quantity of charge corresponding to the solution $ (2, t, E). 

The functional 

r-cl (cp) = J&q + s [vq*vcp -I- (p*(p - i? (cp*cp)] cl’_c (2.7) 

obtained by minimizing the functional (1.1) of the energy E* (6, 4’) with respect to the 

‘velocity’ c$’ under the condition Q (cp, cp’) = 4 
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E* @+A 9’) > v, (9) for Q (cp, cp’) = q (2.8) 

plays a fundamental part in the investigation of the stability of the solution 4 (z, t, E). 

It is easy to see that the point o (x, E) (see (0.2)) is an extremum for the functional 

Vq(@. After this, it is at once clear from (2.8) (by analogy with mechanics) that if the 

‘point’ 6 = (I (x, E) is a minimum of Vq(+), the solution (b (x, t, E) is ‘stable’. Before 

giving an exact formulation, let us recall how we prove the stability of an equilibrium 

position at which the potential energy has a minimum. 

Lemma 2.1. Let (1) the function .x (t) satisfy the equation x”+ grad II = 0 ; further- 

more, (2) let positive numbers aand p exist such that 

az xi 2 < u (x) - u (0) for B Xi’< p 

i 

Then from compliance with the inequalities 

6 < P, z Lzi (t)l” < 6 

2 [xi’ @)I” + u [z @)I - u (0) < a6 and t=O (2.9) 

compliance for all t > 0 follows. 

Proof. Let 

6 < Pt < P, 2 [Xi (&Jl” = p’, t, > 0 

Since p ‘<:p then U (X (to)) - U (0) > up’ > ~6, which contradicts (2.9) 

because of the conservation of energy. 

2.3. The situation is more complicated in the problem under consideration. The func- 

tional Vq(@ has an extremum at each point of the manifold SE defined as 

(S,) ‘p = c% (It: + y, E), 0 < p < 2x5 - 90 < r < + co (2.10) 

The situation will be similar when the potential energy in mechanics is independent 

of one of the coordinates. Correspondingly, the stability of the solution $I (x, t, E) may 

hold only in the sense that (1) if 4 (n, t) is a solution of (0.1) ; (2) the least distance be- 

tween the point (f, (x. t) and points of the manifold (2.10) is small for t = 0, then tb.is dis- 

tance will also be small for all t > 0. 

Let us take the value oi the functional RE(+ - 4’) (see (1.6)) as the ‘distance’ 

1 (4, 4’) between the points #I (z) and 4’(x). Such a definition of the distance is adequate 

for the problem under consideration: for an unfortunate choice of the definition of the dis- 

tance the stability in the above-mentioned sense will not hold (for example, for 

z 0% cp’) = J2 (cp - cp’>). 

2.4. Now an exact formulation may already be given. For Cp” (Z) E SE the 
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The following will be the analog to Lemma 2.1 which will be suitable later. 

Lemma 2.2. If numbers a> 0 and ;q < 0 are found such that 

&E [BE Cpl < II, (9) - Ii, @E rf’) for R, (BE@ < P 

and 4 (x, 11 = $r is the solution of (0.11 with the same value of the charge 

(? t, E, = (PE, r’ then upon compliance with the inequalities 

R, (Q+J,) < 6, E* (Cp,, Cp,‘) - E* ((PEtr (PE, t’) < as 

(2.111 

(2.121 

(2.13) 

at I = 0 compliance with the inequality R, (B,v,) < 6 for all t > 0 will follow for 6 <p. 

The proof duplicates the proof of Lemma 2.2; it need only be taken into account that 

the functional RE(R&J is continuous in t (if the solution & is continuous*). 

It now remains to elucidate whether the inequality (2.12) is valid for the given solu- 

tion 4 (x, 1, El. 

2.i;. IJet us consider the functional v, [a (2, E) -j- av (z)]; we have 

% (a + au) = v, (a) + CPA (a, v) + c (a, a, v) 

(A (UT 2’) = & F/‘, (a + av) I,,) (2.14) 

Lemma 2.3. For any number n (see (0.411, numbers m (2 < m 6 3) and H may be given 

such that 

1 CT (u, a, 22) I< amHp” for RO (u) = p2 (2.151 

Proof. Terms of the functional (2.7) 

Cl = q21Ja (cp)t C2 = s dx F (cp*cp) (2.161 

yield a contribution to C. 

In order to estimate C,, let us use the inequality (k > 1 in the case under consider- 

ation) 

* ‘The existence of the solution & for all t > 0 results from corollary 2.1; as long as 
the solution exists for 0 < t < T (Theorem 2.11, the first inequality of (2.13) is satis- 

fied, which (see APPENDIX (R.l) below) affords the possibility of using Corollary 

2.1. Existence of continuous derivatives d$, / dr, d”~:, / d.r’: should he required here ; 
in order to avert a discussion of the convergence of the integrals in (1.1) and (1.2), the 

functions (bo and $0 may be assumed finite. 
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1 (1 - 2r + 33 + & - 2kx + k (x2 + y2) -i- ‘lzk (k - 1) 4x2 1 < 

< h [(a+ + yV” + (;ca + ya)“] 

(2117) 

Here m = 2k for k < 3/2 and m = 3 for k >,3/2. Let us substitute (0.4) into (2.16) with 

x = a Re [u / a (5, I-01, y = a Im [V / a (2, S)l 

Taking into account the boundedness of the function a (x, E) we obtain 

I C (a, a, 4 I < h [amIm (4 + a 
zh’ 

Jzk (41 (2.18) 

Because of (R.l), the estimate (2.15) for C, thus follows; it is established even more 

simply for Ct. The Lemma is proved. 

Hence, in order to elucidate whether there is an inequality (2.12) for the given solu- 

tion r$ (z, t, E) it is necessary to know the sign of the lower bound X of the functional 

An appropriate investigation is made in APPENDIX A. Its result is that 

A20 for Es 2 l/a n (2.20) 

Let us note that this formula, which defines the stability region, may ‘be obtained’ 

from the following guiding considerations : The ‘points’ a (x, E), where the number E is the 

root of the equation 9 = Q(E) (see (2.4)). are stationary points of the functional I’,_,($). For 

n\< 2 this equation has two roots; for n > 2, only one. Moreover, the functional V9(# has 

improper ‘stationary points’, particularly the ‘point’ r$t : 

5 1 v’pl j2dx = 5 19, 12+2n dx = 0 (2.21) 

Thus the inequality E’ > Xn is the condition that of all the stationary points of the 

functional V,($J), it should take the least value at the point 4 (x, t, El. 

2.6. Thus, for 1 > E2 > ‘/,Tz th e solution 4 (x, r, E) (see (0.2)) of equation (0.1) 

(the function f is defined by (0.4)) is stable in the sense of Lemma (2.2) see (B.I.) also). 

Now, if E’ < ‘An. then the point a (2, E) is a saddle point for the functional V9($) ; as yet 

it may only be said that in this case it is impossible to prove the stability of the solution 

4 (z, t, E) by the method described. However, sufficiently reliable, although not rigorous, 

resonings are presented in APPENDIX A, which show that for E’ < Kn the solution 

4 (x, t, E) is unstable to a first approximation* (hence, the instability of 4 (z, t, E) 

apparently follows). Hence, a very definite connection exists between the stability of the 

solution (0.2) and the nature of the extremum which the energy functional has at the point 

4 (x, t, E). 

* For E = 0 this result is obtained perfectly rigorously. Hobart [S] also considered the 

E = 0 case. 
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3. Let us examine the real solution #I (x, t) ; let us put n = 1 in (0.4) for definiteness. 

Let us consider the functional of the potential energy 

u (cp) = 1 dx I/W/” + l(~j’ - ‘/&PI41 

on the ‘line 4 = c $; as c increases from zero U (c $) first increases, reaches a maximum 

Jf (YJ) = LRJ ($,)I2 1 PJ, ($)I 

and then decreases. It follows from (R.l) that the lower boundary ~of the functional M($) 

is positive. Let us define the domain K by the conditions 

lJ (cp) <( a, ;; (7 (ccp) I,;;, > 0, 

Using Corollary 2.1, it is easy to see that the solution of the problem P (q,,, I$,,) 

exists for ‘pO E K for L > 0 if 

5 19~ (4 1% + u (CPO) < a 

The corresponding motion is similar to finite motion in a potential well in mechanics ; 

the difference, in particular, is that the number of our degrees of freedom is infinite, hence, 

the phase volume accessible for the motion is infinite, and hence, there is no theorem of 

return (to a small neighborhood of the initial point after a sufficiently long time) [6]. In 

this sense the motion described by (0.1) is irreversible. 

Let us turn in (0.1) from 4 (x, t) to its Fourier transform @ (p, t). The equation thus 

obtained will evidently describe an infinite system of coupled oscillators. According to 

existing conceptions, the evolution of such a system should proceed in the direction of an 

approach to statistical equilibrium, i.e., towards the establishment of a uniform distribu- 

tion in the kinetic energy 

7’ = 5 10’ 12dp (3.1) 

between the degrees of freedom so that the existing domain of integration 

I P I < fv (t) 

in (3.1) will increase unboundedly as t grows, and the integrand (in some sense) ceases to 

depend on p and approaches zero within this domain. 

Hence @ (p, t) - 0 (as t + -) and the nonlinearity in the equation for $ (p, L) 

becomes just a small addition so that 

@ (p, t) = A (p, t) C0S 10 (p) t + 61 

where A and 6 are slowly varying functions of time. 

According to the above, it should be expected that as t + 00 the integral 
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s dp lo (p)12” ) A (P, t) I2 

will increase without limit for E > 0, remain bounded for E = 0 and approach zero for 

E CO. Hence 

follows because of the inequality 

3.1. The proposed picture of the behavior of C$ (x, t) as t + 00, given in section 3, is 

connected with such complicated representations as the postulate on the equidistribution 

of energy in the degrees of freedom. Meanwhile, there is an incomparably simpler mechanism 

leading to (3.2), namely, that which guarantees (3.2) in the case of a linear equation. 

3.2. In the case of a ‘quasi-finite’ complex solution of (0.1). i.e. for motion similar 

to the stable ‘equilibrium position’ r,6 ( z, t, E), the presence of several particle-like solu- 

tions 

carrying the whole charge may be expected in the asymptotic 4 (x, t) in addition to the 

part 4, described in section 3, where one of these solutions will turn out to be similar fin 

the sense of Lemma 2.2) to 4 (z, t, E). For n > 2 the charge is diffused, see minimum 

(2.21) of the functional Vq(+). 

4. In general, the set of particle-like solutions is essentially richer in the three- 

dimensional than in the one-dimensional case ; there are radially-symmetric solutions 

without nodes, with one, two, etc. nodes [l]. Furthermore, solutions of the form 

a (x, E) = a, (r, 8, E) eimQ 

are probably possible. 

Here r, 8 and 4 are the spherical coordinates of the point X. 

Moreover, similarly to (2.5), a formula (valid for any function f) 

s djz (22 (l-E2) - 3F (2) + zf (2)) = 0, 2 = (a (z, E) p (4.1) 

may be obtained in the three-dimensional case. 

It hence follows that equation (0.1) may not have particle-like solutions; such is the 

situation, for example*, for f = 19 la*, n > 2. 

* In the paper ‘Monozhestvo reshenii kraevoi zadachi dlia nekotorykh nravnenii 

(continued on the next page) 
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4.1. The properties of the manifold RE(& = p c h ange in dn essential mannrr with the 

transition to the threedimensional case ; the inequality (11.1) is replaced* by the ine- 

quality (P.21. 

The proof of the existence theorem is correspondingly complicated ; for n < 1 it can 

be carried out by the method in [8] ( see [ 9] also): the iterations this time converge to the 

norm’ 

]/CpI] = 1 Cl?X [IT’ 1’ + 1 vq 1’ -i-/Cp /“I 

4.2. 4n investigation of the quadratic functional (2.19) is carried out in exactly the 

same manner as in the one-dimensional case: this time equation t.4.6) yields E:’ = 3n/2. 

The solution 4 (x, t, E) is stable for 1 > E’ > 3n/2, if (A.4) has only one eigenvalue 

less than unity, ma = 1, for U= 0 ; if (A.41 has more than one, ma > 1, such eigenvalues 

for U= 0, then it has at least one eigenvalue h’, (a) less than one for all values z > 0. 

Hence, for me > 1 the solution (x, 1, E) is apparently unstable. Evidently ma > 1 for 

solutions (b (x, t, El with nodes (see [lo], chapter VI, section 1). 

4 numerical computation, made for a radially-symmetric solution without nodes for 

n = 1 (see (0.411, showed mu= 1 : however, a proof that m. = 1 for all (or at least for radially- 

symmetric) nodeless solutions has been unsuccessful. 

APPENDIX A. Let us consider the problem of seeking the minimum of the functional 

A 1~ (x)1 = .l 1~ (s, I:), u (z)]/ R, (u) 
(A.11 

in the class of functions a(x) such that 

(see the definition of the function B ~$(xl at the beginning of section 2.4). 

Minimization of the functional 11 (~1 leads to the equation 

(continued from previous page) 

* Hence, a Lemma of the form (2.51 may only be proved for n < 2. 

t Proof of the existence for 2 > n > 1 is an interesting, though unsolved problem. 

fiziki’ (Set of solutions of boundary value problems for some equations of mathematical 

physics, Preprint OIIaI P-1682, 1964) V.P. Shirikov proved the existence of radially- 

symmetric solutions with any number of nodes for n < 3/2. Nehari [7] proved the absence 

of radially-symmetric particle-like solutions for n > 2 ; the absence of any particle-like 

solutions follows from (4.11. This result is a consequence of the fact that the number u 

of section 3 is zero for n > 2. 
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I - g + 1 - I? - (2n + 1) P 
(A.2) 

+ X,’ IQ @)I2 Uz.[a (2, E))- s a (2, 6) dsu, (s) a (s, I:) = 0 

- 5 + 1 - I? - A*‘P (2, E)} u* (x) = 0 (A.3) 

u1 = Re u (z), u2 = Im u (z), h’ = (1 - h)-’ (J. = A [UI + isal) 

Note that X’ is a monotonically increasing function of A, where A’= 1 for 

A = 0. Let us first turn our attention to the fact that (A.2) and (A.3) have the eigenfunctions 

with the eigenvalues A’ = h,’ = 1. Hence, it is easy to see that the eigenfunctions of 

equations (A.2) and (A.3) with eigenvalues h’f 1 satisfy conditions (A.l). On the other 

hand, the functions u I0 and u 2. do not satisfy these conditions. Assuming the eigen- 

functions of equations (A.2) and (A.3) to form a complete system, we see that the lower 

bound of the functional (2.19) is determined by the lowest eigenvalue of (A.2) and (A-3) 

(the eigenfunctions ut,_, and u2,, and their eigenvalues are not taken into account in the 

computation). The function u (x, E) has no zeros, hence, the eigenvalue h’= 1 is lowest 

for (A-3). Furthermore, the substitution z v/1-- = y (see (2.2)) reduces (A.2) to the 

form 

-$+1 - A,’ (2n + 1) b2” (y;} w (y) + uh,‘b (y) [J2 (Q-1 \ w (z) b (z) dz = 0 
I 

4E2 
= -= 1 (A.4) 

Tlifferentiating with respect to u we find 

dhl’ Al’ 
-T = J, (b) R, (Iv) 

[ids8 (s) w (s)]‘>O (A.51 

For a = 0 equation (A.4) has an eigenvalue x;. less than one, and only one, because 

the eigenfunctioa w = ab / &J with one zero corresponds to the eigenvalue A: = 1 (for 

a = 0 the integral in (A.4) drops out). Because of (A.5) it remains merely to explain whether 

the eigenvalue h;,, (a) of (A.4) which takes the value Xi0 for a = 0, becomes one. 

Differentiating (2.1) with respect to E we find 

{ 
-$+1-c - (2n + 1) u2n 

[aa (2, E) 
(z, E)} --Yar = 21:‘a (I, /I) 

Comparing this relation with (A.4) for h’= 1, we obtain the equation 

E &f2 [a (z, E)l = - J2 [U (x, E)] (~.6) 
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to seek the zeros of the function hi,, (a) - 1. Hence, (2.20) follows. 

Furthermore, let us substitute the equation ‘p (2, t) = cp (r, t, 1:‘) i- C. into (0.1). 

Discarding higher order terms in v, we obtain a variational equation which takes the form 

t=t41-E2, ?J=zJfl-_P for u = eyrw (y) 

in the variables 

{va - $3 + 1 - (2n + 1) b”’ (Y)}WI (Y) = aw2 (Y) (ZU~ = Re W) 

{va - 5 + 1 - b2n (y)}wr (Y) = - a% (Y) (zus = Im UJ) 
(A .7) 

For a = 0 this system has the eigenvalue vo > 0 (so that the solution C$ (x, t, 0) is 

unstable in the first approximation). It is hence natural to expect that there is a region 

0 < u < a,, in which the system (A.7) will have a real eigenvalue v (a),! v (a) > 0 

for 0 < a < (x0, v (a,,) = 0. It is easy to see that the value a0 is defined by the relationship 

(~.6). 

Proof of the existence of a solution of the system (A.7) with the properties assumed 

above for a f 0 was unsuccessful. However, the doubt arising in this connection is 

smoothed over by the favorable result of the numerical computation carried out for n = 1 

(the solution of the system (A.7) was determined as a series in powers of a (x, E)). Let 

us note that equation (A.6) to seek the roots of the equation il,,’ (a) = 1 (and the roots of 

the equation v (~1) = 0) remains valid for any function f @I*@). 

APPENDIX B. The inequality 

IT (4 I < H fflo kt41”~ 

holds for functions of one variable. 

Analogously, for fnnctions of three independent variables [ 1 l] we have 

JI (cp) < H [Ho WI”” 

the number H is independent of 4. 

for 2 < 1 < 6 

(B.1) 

(B.2) 
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